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An efficient synthesis of diastereomerically pure 5-amino-1,2,3,4-cyclohexanetetrols (6 and 11) and
quercitol derivatives from naturally available (+)-proto-quercitol (1) is described. The stereochemistry
of 1 is perfectly set up for regioselective protection of the hydroxy group which was further functional-
ized into the target aminocyclitol in a straightforward manner. The present approach provides a protocol
for preparing aminocyclitols in large quantities. In addition, the absolute stereochemistry of (+)-proto-
quercitol was addressed using the modified Mosher’s method. Of the synthesized aminocyclitols, 11
potentially inhibits a-glucosidase with an IC50 value of 12.5 lM, which is 45 times greater than that of
the standard antidiabetes drug, Acarbose�.

� 2009 Elsevier Ltd. All rights reserved.
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Aminocyclitols such as valiolamine, validamine, and valien-
amine were shown to possess inhibitory activity against various
glycosidases (Fig. 1).1 Subsequent investigations regarding chemi-
cal modification, particularly of the amino scaffold, resulted in the
discovery of voglibose, a clinically potent remedy to control diabe-
tes mellitus (DM).2 The inhibitory effect of aminocyclitols has been
elaborated on the basis of their structural resemblance to the D-
glucopyranosyl cation possibly generated during hydrolysis of
their glycosides and strong covalent bonding to the active site of
the enzyme.3 Several syntheses of aminocyclitols have been
accomplished using cyclohexanepentols, trivially called quercitols,
as starting components.4 In fact, quercitol has 16 possible stereo-
isomers, however only (+)-proto-, (�)-proto-, and (�)-vibo-querci-
tols have been encountered abundantly in Nature.5

To date, there have been a few reports on the syntheses of
aminocyclitols from natural quercitols. Although Ogawa succeeded
in the preparation of 5-amino-1,2,3,4-cyclohexanetetrol analogues
from (�)-vibo-quercitol, nearly half of the product yield was lost in
the early steps.4b We considered that protection of a 1,2-diol as an
acetonide could not be carried out specifically at C-1/C-2 and C-3/
C-4, therefore yielding 3-hydroxy- and 5-hydroxy-bis-acetonide
quercitols as an inseparable mixture. In addition, a similar result
was also observed by Ogawa in the synthesis of aminocyclitols
using unnatural (�)-epi-quercitol.4a

To circumvent this problem, the use of the correct stereoisomer
of quercitol is crucial. Of all the stereoisomers, (+)-proto-quercitol
ll rights reserved.
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is likely to be a potential candidate due to the possibility of gener-
ating a single bis-acetonide, in addition to its natural availability.
In this Letter, we report the first synthesis of diastereomerically
pure 5S- and 5R-amino-1,2,3,4-cyclohexanetetrols (6 and 11) using
(+)-proto-quercitol (1). Furthermore, determination of the absolute
configuration of 1 using the modified Mosher’s method is also
described.

(+)-proto-Quercitol (1) utilized in this study was isolated from
the stems of Arfeuillea arborescens using the previously described
method with slight modification.6 The MeOH extract, after parti-
tioning with hexane and CH2Cl2, was concentrated to afford the de-
sired quercitol (ca. 0.6%) as colorless crystals.7 The structure and
relative configuration were determined by spectroscopic tech-
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niques, including 2D NMR. Despite the first report of 1 from Nature
since 1961,8 the absolute configurations of all the stereogenic cen-
ters have not been addressed.

Prior to applying the modified Mosher’s approach, protection of
the hydroxy groups was required to avoid combined anisotropy ef-
fects caused by multiple MTPA moieties.9 Treatment of 1 with a
large excess of 2,2-dimethoxypropane (10 equiv) in DMF in the
presence of p-TsOH at ambient temperature yielded 1,2:3,4-di-O-
isopropylidene derivative 2 as a single product (Scheme 1).10 The
NOESY data indicated that the acetonides that formed between
C-1 and C-2 and between C-3 and C-4 were trans- and cis-oriented,
respectively (Fig. 2). The bis-acetonide 2 was then treated with (+)-
and (�)-MTPACl, separately, to furnish the desired R- and S-MTPA
esters. The DdSR distribution indicated the 5R configuration, there-
fore the absolute configurations of the remaining chiral centers are
addressed as shown in Scheme 2.

After the absolute stereochemistry of the carbocyclic frame-
work had been established, we next investigated the synthesis of
5S-amino-1,2,3,4-cyclohexanetetrol (6) (Scheme 3). In an effort to
prepare azide 4, we first attempted to transform bis-acetonide 2
into the corresponding chloride by reaction with thionyl chloride.
Unfortunately, this was unsuccessful, presumably due to steric
hindrance from the two adjacent acetonide groups.

Alternatively, the 5-OH group of 2 was activated by converting
it to mesylate analogue 3. Reaction of 3 with an excess of sodium
azide in DMF at 100 �C in the presence of 15-crown-5 ether affor-
ded selectively the azide 4 (79%) as the sole product after flash
chromatography. The chemical shift at dH 3.35 with a large cou-
pling constant (J 5,6ax = 11.6 Hz) suggested that the azido group
was incorporated with inversion of configuration. Reduction of
azide 4 proceeded smoothly upon treatment with LiAlH4, leading
to formation of the corresponding amine 5 in good yield. Exposure
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Scheme 1. Preparation of 1,2:3,4-di-O-isopropylidene derivative 2.
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Figure 2. Selected NOESY correlations of 2. For clarity, certain H atoms are omitted.
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of the amine 5 to trifluoroacetic acid in THF at room temperature
furnished the target molecule, aminocyclitol 6 in 63%.11
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Figure 3. Partial 1H NMR (400 MHz, CDCl3) spectra of 2 (top) and 8 (bottom).
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Table 1
a-Glucosidasea inhibitory effect of compounds 1, 6, 11, 12, and 13

Compound Inhibitory effect (IC50, lM)

1 NIb

6 2890
11 12.5
12 670
13 921
Acarbose� 570
DNJ 173

a a-Glucosidase was obtained from Baker’s yeast.
b Inhibitory effect less than 30% at 10 mg/mL.
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To gain insight into the relationship between the stereochemis-
try of the 5-amino group and the inhibitory effect toward a-gluco-
sidase, the 5R-amino congener 11 was also prepared. Initially, bis-
acetonide 2 was subjected to oxidation using the Albright-Gold-
man reagent (DMSO/Ac2O),12 to afford ketone 7 (54%). Selective
reduction of 7 was carried out with LiAlH4 in THF as the solvent,
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Scheme 5. Mechanistic formation of bis-acetonides 2, 16, and 17
generating exclusively diastereomeric 5-hydroxy-bis-acetonide 8
(93%), with no 2 being detectable. This could be rationalized by
preferential hydride attack on the less hindered face of ketone 7.
Obviously, compounds 2 and 8 could be differentiated by 1H
NMR spectra (Fig. 3); H2-6 of the former resonated at about dH

2.04–2.11 while those of the latter were well separated [dH 2.36
(H-6 equiv) and 1.88 (H-6ax)]. With 5-hydroxy-bis-acetonide 8 in
hand, we subsequently accomplished the synthesis of the 5R-ami-
no congener 1113 in a manner similar to that of aminocyclitol 6. In
order to gain more information on the pharmacophore required for
C-5, we synthesized other cyclitol derivatives. Deprotection of 7
and 8 was carried out under the aforementioned conditions, and
subsequent purification by recrystallization afforded pure target
cyclitols 1214 and 1315 in moderate yields (Scheme 4).

5-Amino-1,2,3,4-cyclohexanetetrols (6 and 11) and deprotected
analogues 12 and 13 were evaluated for a-glucosidase inhibition
(Table 1) using a method reported previously.16 The synthesized
compounds showed weak inhibition (IC50 670–2890 lM) than
the antidiabetes drugs (Acarbose� and DNJ), except for amino
cyclitol 11 (IC50 12.5 lM). The very large difference in the inhibi-
tory effect of the two diastereomeric aminocyclitols 6 and 11
(IC50 2890 vs 12.5 lM) suggested that the configuration of the 5-
NH2 was possibly essential for mimicking the conformation and
charge of the oxycarbenium ion intermediate.

In summary, we have prepared diastereomerically pure 5S- and
5R-amino-1,2,3,4-cyclohexanetetrols (6 and 11) from natural (+)-
proto-quercitol (1) via two parallel routes. The key to the success
involved the exclusive formation of bis-acetonide 2, which was
generated through cis-ketal 14 (Scheme 5). In cases where several
1,2-acetonides are possible, formation of a cis-cyclic ketal is more
favorable than that of the trans-derivative. On the other hand,
(�)-vibo-quercitol afforded an inseparable mixture of bis-aceto-
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nides 16 and 174b on treatment with 2,2-dimethoxypropane
though cis-cyclic ketal 15 was initially generated. This can be ratio-
nalized by the possible formation of a second acetonide at C-1/C-2
or C-2/C-3. Interestingly, aminocyclitol 11 displayed more striking
inhibition than the diastereomeric congener 6, indicating that the
configuration of the 5-NH2 is critical for blocking the enzyme. With
the excellent biological activity of 11, (+)-proto-quercitol could
serve as an alternative chiral pool substrate for the synthesis of di-
verse aminocyclitols and related analogues.
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